Approaches to Unsaturated Analogues of Nucleosides Comprising Four- and Six-Membered Rings

Hui-Ping Guan, ${ }^{\dagger}$ M ohamad B. Ksebati, ${ }^{\ddagger}$ Earl R. Kern,§ and J iri Zemlicka*, ${ }^{\text {T }}$
Department of Chemistry, Experimental and Clinical Chemotherapy Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, 110 East Warren Avenue, Detroit, Michigan 48201-1379, Central Instrumentation Facility, Department of Chemistry, Wayne State University, Detroit, Michigan 48202, and Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, Alabama 35294
E-mail: zemlicka@kci.wayneedu

Received February 29, 2000

Abstract

Unsaturated nucleoside analogues $\mathbf{2 1}, \mathbf{2 2}, \mathbf{4 6}$, and $\mathbf{5 4}$, comprising four- and six-membered rings, were synthesized using two different approaches. The 2-benzyloxycycloalkanones 23a and 23b served as starting materials for both methods. Conversion to methylenecyclobutanes 29a and 29b was fol lowed by addition of bromine via pyridinium perbromide to give vicinal dibromides 30a and 30b. Reaction of 29a with Br_{2} gave a ring-contracted cyclopropane derivative 31. Alkylationelimination of adenine with 30a gave bromoal kene 32 as the major product and adenine-containing unsaturated derivatives $\mathbf{3 3}, \mathbf{3 4}$, and $\mathbf{3 5}$ as minor components. Vicinal dibromide $\mathbf{3 0 b}$ gave the Zaitsev cyclohexene 45 as the only product. Epoxidation of 29a and 29b afforded oxiranes 36a and 36b which were used in alkylation of adenine to furnish hydroxy derivatives 37a, 37b, 38a, and 38b. β-Elimination via mesylates 39a and 40a using tBuOK/DMF gave Z - and E -methylenecyclobutanes 34 and 35 . With an excess of base the E-bis-methyl enecycl obutane $\mathbf{4 1}$ was obtained. Mesylation of cycl ohexane derivatives $\mathbf{3 7 b}$ and $\mathbf{3 8 b}$ gave the Z- and $\mathrm{E}-\mathrm{N}^{6}$-mesylated product 48. By contrast, the N^{6}-benzoyl derivatives 49 and $\mathbf{5 0}$ afforded O -mesyl intermediates 51 and 52 . β-Elimination gave both H ofmann and Zaitsev products 53 and 45 . O-Debenzylation of $\mathbf{3 4}$ and 35, 45, and 53 afforded analogues 21, 22, 46, and $\mathbf{5 4}$. The E-isomer 22 was also obtained by hydroboration procedure from E-bis-methylenecycl obutane 41.

Introduction

Unsaturated anal ogues of nucleosides are in the center of current interest as potential antiviral and antitumor agents. This diverse class of compounds includes antibiotics decoyinine (angustmycin A) ${ }^{1}$ (1) and neplanocin ${ }^{2}$ A (2), AIDS drug stavudine ${ }^{3}$ (3a), anti-HIV agents carbovir ${ }^{4}$ (3b) and (-)-BCA ${ }^{5}$ 4, antitumor agent 2'-deoxy-2'-methylenecytidine ${ }^{6}$ (DMDC, 5), and carbocyclic analogue BMS 200475 (6) ${ }^{7}$ effective against hepatitis B virus (HBV). The $3^{\prime}, 4^{\prime}$-unsaturated nucleosides 7 are also known. ${ }^{8}$ Likewise, significant attention has been paid to the development of synthetic methods for four-membered ring structures with exocyclic or endocyclic double bonds such as

[^0]compounds ${ }^{9-11} \mathbf{8 - 1 1}$. This effort was undoubtedly motivated by the antiviral activity of antibiotic oxetanocin A (12a) and the carbocyclic guanine analogue ${ }^{12} \mathbf{1 2 b}$. Syntheses of cyclohexene analogues 13-15 related to carbovir ${ }^{4}$ (3b) were al so subjects of several investigations. ${ }^{13-15}$ Structures of 1-22 are shown in Chart 1.

It is noteworthy that most of the unsaturated nucleoside analogues studied thus far are substituted at an allylic position of the unsaturated carbohydrate (carbocyclic) moiety by a nucleic acid base (compounds 2-6, 8, 10, 11, and 13-15). Nevertheless, analogues of an enamine type, with a double bond attached to a heterocyclic base, such as $1^{\prime}, 2^{\prime}$-unsaturated nucleosides ${ }^{16}$ 16, N -vinyl nudeic adid bases ${ }^{17 \mathrm{a}}$ 17, and derivatives thereof ${ }^{17 \mathrm{~b}, \mathrm{c}}$ 18 are known. In this group of analogues, methyl-

[^1]
Chart 1. Structures 1-22

enecyclopropanes ${ }^{18} 19$ and allenes ${ }^{19} 20$ exhibited potent antiviral activity. Previously, the alkylation-elimination procedure proved advantageous ${ }^{18 b, 20}$ for synthesis of methylenecyclopropanes 19. It was therefore of interest to investigate the scope and limitations of this procedure for synthesis of unsaturated analogues comprising larger than three-membered rings. Alternate approaches for synthesis of such compounds were also in the focus of our attention. The results obtained with four- and sixmembered ring systems are the subject of this communication.

Results and Discussion

Two approaches for synthesis of the Z- and E-methylenecyclobutane anal ogues $\mathbf{2 1}$ and $\mathbf{2 2}$ were investigated. Both approaches made use of 2-(benzyloxymethyl)cyclobutanone (23a) as a key intermediate. The latter was obtained by a modification of the procedure described for the corresponding O-benzoate. ${ }^{21}$ Reaction of ethyl acrylate (24) and ketene dimethyl thioacetal ${ }^{22}$ (25) furnished

[^2]Scheme 1

ethyl 2,2-(bismethylthio)-1-cyclobutanecarboxylate (26) in 82% yield (Scheme 1). Reduction ${ }^{23}$ with LiAlH_{4} in THF gave hydroxymethyl derivative 27 (93\%). Benzylation afforded the O-benzyl thioacetal 28 which, in turn, was hydrolyzed using N -chlorosuccinimide and AgNO_{3} in aqueous MeCN^{20} to give the key intermediate 23a in a total yield of 70%. The Wittig methylenation led then to methylenecycl obutane 29a (73\%). Surprisingly, addition of bromine in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at low temperature $\left(-78{ }^{\circ} \mathrm{C}\right)$ did not give any expected vicinal dibromocycl obutane 30a but a ring-contracted derivative 31 in 70% yield. F ormation of cyclopropylmethyl, cyclobutyl, and open-chain compounds was previously observed in solvolysis of cyclobutyl derivatives. ${ }^{24}$ In our case, the reaction which proceeds most likely via the respective bromonium cation gives 31 as a major product. By using a less reactive agent, pyridinium hydrobromide perbromide at $0^{\circ} \mathrm{C}$, a ring

[^3]Scheme 2

39
40
$34+35 \xrightarrow{e} 21$ and 22
a. m-CPBA, $\mathrm{NaHCO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$.
b. Adenine, $\mathrm{NaH}, \mathrm{DMF}, \Delta$.
c. MsCl, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ - pyridine.
d. tBuOK, THF.
e. $\mathrm{BCl}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$.
contraction was not observed and dibromocyclobutane 30a was obtained in 95\% yield. Alkylation of adenine with 30a, using $\mathrm{K}_{2} \mathrm{CO}_{3}$ in DMF at $110{ }^{\circ} \mathrm{C}$ (18 h), led predominantly to an elimination of elements of HBr to give the E/ Z-bromomethylenecyclobutanes 32 (70\%). Products of alkylation-elimination 33 (3.5\%), and 34 and 35 (4.6%, ratio $2: 1$) were obtained as minor components. Interestingly, this ratio corresponded to the values observed in the methylenecyclopropane series ${ }^{18,20}$ (Z/ E $=2: 1$ or $1: 1$). Reaction of $\mathbf{3 0}$ a using sodium salt of adenine in DMF at $100^{\circ} \mathrm{C}$ for 10 h afforded a similar distribution of the reaction products.

Because of low yields of intermediates 34 and 35 we sought an alternate approach (Scheme 2). Protected methylenecycl obutane 29a was converted to oxirane 36a in quantitative yield. Opening of the epoxide ring with adenine afforded readily separable Z- and E-hydroxy derivatives 37a and 38a in 34 and 32% yield, respectively. Mesylation of the tertiary hydroxy groups of 37a and 38a by a routine mesyl chloride-pyridine procedure proved difficult but catalysis with DMAP gave the Z- and E-mesylates 39 and 40 in 50 and 69\% yield. The $\mathrm{Sc}(\mathrm{OTf})_{3} /$ DMAP method ${ }^{25}$ recommended for acylation of tertiary hydroxy groups was not applicable for mesylation of 37a and 38a. It should be noted that separated isomers of 39 and 40 are not necessary for the next step. Thus, an elimination of mesyloxy function was performed with a mixture of mesylates 39 and 40 using a 50% excess of tBuOK in THF to give the mixture of Z - and E -isomers 34 and 35 in 87% yield. Surprisingly, with a 2 M excess of tBuOK, the benzyloxy group was also eliminated to give diene 41 (Scheme 3) as an E-isomer in 78\% yield.

O-Debenzylation of isomeric mixture $\mathbf{3 4}$ and $\mathbf{3 5}$ was performed with BCl_{3} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78{ }^{\circ} \mathrm{C}$ to give target compounds 21 and 22. The separation of both isomers could not be accomplished on silica gel, but chromatography on alumina led to a smooth resolution of the Eand Z-isomers $\mathbf{2 2}$ and $\mathbf{2 1}$ which were obtained in 68 and

[^4]Scheme 3

a. tBuOK (excess), THF.
b. 1. 9-BBN, THF. 2. $\mathrm{H}_{2} \mathrm{O}_{2}-\mathrm{NaOH}$.

Scheme 4

a. $\mathrm{BCl}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$.
b. $\mathrm{Me}_{2} \mathrm{C}(\mathrm{OMe})_{2}, \mathrm{TsOH}, \mathrm{DMF}$.
11% yield, respectively. It is interesting to note that the ratio of isomers differs significantly from that obtained by the alkylation-elimination procedure (Scheme 1, ratio $34 / 35=2: 1$). Selective hydroboration of diene 41 with 9-BBN in THF and alkaline $\mathrm{H}_{2} \mathrm{O}_{2}$ gave the E-isomer 22 in 62% yield (Scheme 3). This result contrasts with a previously reported ${ }^{26}$ lack of success with selective hydroboration of conjugated dienes. An absence of enamine reduction ${ }^{27}$ (loss of heterocyclic base) is al so noteworthy.

Deprotection of intermediates 37a and 38a afforded diols 42 and 43 in 78 and 75% yield, respectively (Scheme 4). Although neither $\mathbf{4 2}$ nor $\mathbf{4 3}$ formed borate complexes as indicated by paper electrophoresis in $0.1 \mathrm{M} \mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}$ (pH 9), compound 42 was smoothly transformed (77% yield) to a 1,3-dioxane derivative 44 using acetone dimethyl ketal and TsOH in DMF. This established the Z-isomeric structure of 42.

As expected, the UV spectra of compounds $\mathbf{2 1}$ and $\mathbf{2 2}$ were very similar to those of the corresponding Zmethylenecyclopropane analogue 19 ($B=$ Ade) and its E-isomer. ${ }^{18 b}$ The assignment of the Z- and E-isomers 21 and $\mathbf{2 2}$ and structure of diene $\mathbf{4 1}$ followed from the NMR spectra and, particularly, from the NOE data (Chart 2). A significant difference between the H_{8} chemical shifts of 21 and 22 ($\Delta \delta 0.24$ vs 0.26 found for the Z- and E-isomers of synadenol ${ }^{18 \mathrm{~b}}$) suggested the Z-isomeric structure of 21. This was corroborated by NOE enhancement (6.4\%) between the H_{8} and $\mathrm{H}_{5^{\prime}\left(6^{\prime}\right)}$ absent in the E-isomer 22. By contrast, the E-isomer 22 exhibited NOE enhancements of 1.3 and 3.1% of the $\mathrm{H}_{1^{\prime}}$ and $\mathrm{H}_{5^{\prime}}$ as well as 1.0 and 2.4% of $\mathrm{H}_{1^{\prime}}$ and $\mathrm{H}_{6^{\prime}}$ that were not found in the Z-isomer 21. Interestingly, the NOE was observed between the $\mathrm{H}_{1^{\prime}}$ and both H_{8} and H_{2} (2.0-2.3 and 0.6%, respectively) in the Z-isomer $\mathbf{2 1}$ indicating, on an NMR time-scale, some freedom of rotation of the heterocyclic base. N o such interactions were observed in the E-isomer 22 where such a rotation is much less hindered. The structure of diene 41 was confirmed by the UV spectrum ($\epsilon_{\max } 23500$ vs 13600 for the E-isomer 22) which is compatible with the presence of a conjugated system of double bonds attached to a heterocyclic base. The ${ }^{1} \mathrm{H}$

[^5]Chart 2. NOE Data of 21, 22, and 41

22

41

Scheme 5

46
47
47a: $R=B n, 47 b: R=H$
a. Adenine, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{DMF}, \Delta$
b. Adenine, $\mathrm{NaH}, \mathrm{DMF}, \Delta$.
c. $\mathrm{Na}, \mathrm{NH}_{3}(\mathrm{I})$.
d. $\mathrm{tBuOK}, \mathrm{DMF}, \Delta$

NMR spectrum showed the presence of exomethylene protons $\mathrm{H}_{6^{\prime}}$ and $\mathrm{H}_{6^{\prime \prime}}(\delta 5.40$ and 4.86 , respectively). The NOE data confirmed the E-isomeric structure of 41 as based on enhancements between the $\mathrm{H}_{1^{\prime}}$ and $\mathrm{H}_{6^{\prime}}$ of 1.6 and 10%, respectively.

It was then of interest to investigate the applicability of both approaches for synthesis of unsaturated nucleoside analogues comprising a six-membered ring. The known ${ }^{28}$ 2-(benzyloxymethyl)cyclohexanone (23b) was converted by a Wittig methylenation to compound 29b (88%, Scheme 1). Addition of bromine, effected by pyridinium hydrobromide perbromide in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$, gave the corresponding vicinal dibromide 30b in 98% yield. Alkylation-elimination of adenine with $\mathbf{3 0 b}$ using $\mathrm{K}_{2^{-}}$ CO_{3} or NaH in DMF gave the cyclohexene derivative 45 in 60 and 41% yield, respectively (Scheme 5). Attempted deprotection of 45 with BCl_{3} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78{ }^{\circ} \mathrm{C}$ was not successful, possibly, because the cleavage can occur at benzylic and allylic sites of the molecule. However, debenzylation with Na in liquid NH_{3} was uneventful in giving the target analogue 46 in 53\% yield. Attempted isomerization of $\mathbf{4 5}$ and 46 with tBuOK in DMF to give

[^6]Scheme 6

48
a. $\mathrm{MsCl}, \mathrm{DMAP}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ - pyridine.

Scheme 7

54
exocyclic alkenes 47a and 47b failed. Similar isomerization was effected without difficulty in the acyclic series. ${ }^{17 c}$ It is clear, then, that thestability of the endocyclic double bond in a six-membered ring prevails over any possible energy gain from conjugation with a heteroaromatic system.
An alternate approach also followed the methods described for methylenecyclobutane analogues (Scheme 2, $\mathrm{n}=2$). Methylenecyclohexane 29b was converted to oxiranes 36b, by reaction with $\mathrm{m}-\mathrm{CPBA}$ in NaHCO_{3} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, in 84% yield. Alkylation of adenine with 36b using NaH in DMF at $110{ }^{\circ} \mathrm{C}$ afforded a $1: 1$ mixture of the Z- and E-isomers 37b and 38b in 45% yield. Attempted O-mesylation of this product with MsCl and DMAP in pyridine gave only the N -mesylated product 48. The latter was obtained as an inseparable mixture of Z- and E-isomers in 46% yield (Scheme 6). No Omesylated products were detected even if the reaction was performed with 6 equiv of MsCl . The structure of 48 followed from the UV, NMR, and mass spectra. The UV maximum (273 nm) is indicative of N -substitution of the adenine moiety. As expected, the CH_{3} signal of the mesyl group in the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 8}(\delta 3.28)$ is shifted downfield from that of the O-mesylates 39 and 40 ($\delta 3.08$ and 3.14 , respectively). Surprisingly, no $\mathrm{N}^{6}-$ mesylation was observed in the cydobutane series (Scheme 2). Apparently, the tertiary hydroxy groups of cyclobutanes 38a and 38b are less sterically hindered than in cycl ohexanes 37b and 38b.

Therefore, compounds 37b and 38b were selectively benzoylated using $\mathrm{Bz}_{2} \mathrm{O}$ in pyridineto give the N^{6}-benzoyl derivatives 49 and 50 (69\%, Scheme 7). Mesylation gave O-mesylates 51 and 52 in 50\% yield. Interestingly, it
seems that introduction of the benzoyl group at a distant N^{6} position led to a relief of steric hindrance at the tertiary hydroxy groups. β-Elimination effected with tBuOK in THF and debenzoylation with $\mathrm{NH}_{3} / \mathrm{MeOH}$ were perfomed in one pot. The products were separated by silica gel chromatography to give isomeric cyclohexenes 53 (46\%) and 45 (22\%). The latter was identical to the product obtained from an alkylation-elimination procedure with dibromides 30b. Both products are clearly differentiated by the ${ }^{1} \mathrm{H}$ NMR spectra (lack or presence of an ol efinic proton). Apparently, H ofmann-type orientation of the double bond predominates with mesylates 51 and 52, whereas dibromides 30b afforded exclusively Zaitsev product 45. O-Debenzylation of cyclohexene 53 smoothly afforded compound 54 in 70\% yield.

Compounds 21, 22, 42, 43, and 46 were tested against HCMV, HSV-1, HSV-2, EBV, HBV, VZV, and HIV-1 using the assays described previously. ${ }^{18 b}$ None of them had a significant antiviral activity. A moderate effect of 21 against EBV in Daudi cells ($\mathrm{C}_{50} 39 \mu \mathrm{M}$) was not separated from cytotoxicity ($\mathrm{CC}_{50} 40 \mu \mathrm{M}$). These analogues were also ineffective as substrates for adenosine deaminase.

Experimental Section

General Methods. See reference 18b. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded with the 300 and 400 MHz instruments. For the FAB-MS thioglycerol matrix was used, and 2-methylpropane was employed as an ionization gas in $\mathrm{Cl}-\mathrm{MS}$. (Benzyloxymethyl)cyclohexanone (23b) was prepared from cyclohexanone and dibenzyloxymethane ${ }^{29}$ as described. ${ }^{28}$

Ethyl 2,2-Bis(methylthio)-1-cyclobutanecarboxylate (26). Diethylaluminum chloride (1.0 M in hexane, 125 mL) was added dropwise with stirring at $0^{\circ} \mathrm{C}$ to a solution of 1,1 -bis(methylthio)ethylene ${ }^{22}(\mathbf{2 5}, 10 \mathrm{~g}, 84 \mathrm{mmol})$ and ethyl acrylate ($\mathbf{2 4}, 13.5 \mathrm{~mL}, 186 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$. The mixture was stirred under N_{2} for 1 h and then at room temperature for another 1 h . The reaction was quenched by the careful addition of $E t_{3} \mathrm{~N}(9 \mathrm{~mL})$ and 10% aqueous sodium bicarbonate (50 mL) at $0{ }^{\circ} \mathrm{C}$. The inorganic salt was removed by filtration and it was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phase was washed with $\mathrm{H}_{2} \mathrm{O}$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After evaporation of solvents, the crude product was purified on a silica gel column (hexanes/ethyl acetate, 20:1) to gi ve the pure product 26 as an oil ($16.0 \mathrm{~g}, 82 \%$).

2,2-Bis(methylthio)-1-cyclobutylmethanol (27). A solution of compound $26(14.0 \mathrm{~g}, 6.46 \mathrm{mmol})$ in THF (80 mL) was added to a suspension of $\mathrm{LiAlH}_{4}(3.55 \mathrm{~g}, 9.54 \mathrm{mmol})$ in THF $(100 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ with stirring. The mixture was stirred at 0 ${ }^{\circ} \mathrm{C}$ for 1 h and the reaction was quenched carefully by saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The precipitate was filtered off and it was washed with ether. The filtrate was concentrated in vacuo and the residue was purified by column chromatography on silica gel (hexanes/ethyl acetate, 9:1) to give product 27 as a colorless oil ($12.0 \mathrm{~g}, 93 \%$). The ${ }^{1} \mathrm{H}$ NMR spectrum corresponded to that described for the S -enantiomer. ${ }^{23}$

2-(Benzyloxymethyl)cyclobutanone (23a). To a solution of [2,2-bis(methylthio)-1-cycl obutyl]methanol (27, $5.0 \mathrm{~g}, 28$ mmol) in THF (160 mL) cooled to $0^{\circ} \mathrm{C}, \mathrm{NaH}(50 \%$ in mineral oil, $2.69 \mathrm{~g}, 56 \mathrm{mmol}$) was added in portions with stirring under N_{2}. The mixture was stirred for 30 min at room temperature, and benzyl bromide ($33.6 \mathrm{mmol}, 4.0 \mathrm{~mL}$) was added dropwise followed by tetrabutylammonium iodide ($0.1 \mathrm{~g}, 0.27 \mathrm{mmol}$). The stirring was continued for 16 h . The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(150 \mathrm{~mL})$ and the mixture was extracted with ethyl acetate/hexanes (1:1). The organic phase was washed with aqueous NaHCO_{3} and brine and it was dried
(29) Laskina, E. D. Zh. Prikl. Khim. 1959, 32, 878-882; Chem. Abstr. 1959, 53, 17039b.
over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of sol vents gave the crude 2-(benzyloxymethyl)cyclobutanone bis(methylthio)ketal 28 which was added dropwise into a stirred solution of N -chlorosuccinimide (NCS, $11.2 \mathrm{~g}, 84 \mathrm{mmol}$) and AgNO_{3} ($16.1 \mathrm{~g}, 95 \mathrm{mmol}$) in 90% acetonitrile at $0^{\circ} \mathrm{C}$. After the mixture was stirred for 10 min at room temperature, saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}, \mathrm{NaH}$ CO_{3}, and brine were added successively. The solids were removed by filtration. The filtrate was extracted with ethyl acetate; the organic phase was washed with brine and it was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated and the crude product was chromatographed on a silica gel column using hexanes/ethyl acetate (10:1) to give 23a as a colorless oil 3.74 $\mathrm{g}(70 \%)$. ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 7.35(5 \mathrm{H}, \mathrm{m}), 4.54(2 \mathrm{H}, \mathrm{s}),$, $(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=5.4$ and 9.9 Hz) and $3.60(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=4.5$ and 9.6 $\mathrm{Hz}), 3.55(1 \mathrm{H}, \mathrm{m}), 3.04(2 \mathrm{H}, \mathrm{m}), 2.18$ and $2.06(2 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR: 210.5, 138.10, 128.34, 127.64, 127.57, 73.16, 67.56, 60.63, 45.71, 14.29. EI-MS: 190 (M, 2.0), 91 (100.0). HRMS: cal cd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2}, 190.0994$; found, 190.0992.

1-(Benzyloxymethyl)-2-methylenecyclobutane (29a). Butyllithium (1.6 M in hexane, $13.82 \mathrm{~mL}, 22 \mathrm{mmol}$) was added to a suspension of methyltriphenylphosphonium bromide (7.89 $\mathrm{g}, 22 \mathrm{mmol}$) in THF (100 mL) at room temperature with stirring under N_{2}. After 2 h , ketone 23a ($3.0 \mathrm{~g}, 16 \mathrm{mmol}$) in THF (50 mL) was added dropwise and the resulting mixture was stirred another 14 h . The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(150 \mathrm{~mL})$ and it was extracted with ether. The organic phase was washed with aqueous NaHCO_{3} and brine, and it was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude product obtained after evaporation was chromatographed on a silica gel col umn (hexanes/ethyl acetate, 100:0.5 \rightarrow 100:1.5) to give compound 29a as a colorless oil ($2.20 \mathrm{~g}, 73 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.37(5 \mathrm{H}, \mathrm{m}), 4.90(1 \mathrm{H}, \mathrm{m})$ and $4.82\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}=\right)$, $4.60(2 \mathrm{H}, \mathrm{s}), 3.60(2 \mathrm{H}, \mathrm{m}), 3.32(1 \mathrm{H}, \mathrm{m}), 2.70(2 \mathrm{H}, \mathrm{m}), 2.17$ ($1 \mathrm{H}, \mathrm{m}$), and $1.80(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR: 151.36, 138.62, 128.38, $127.65,127.55,105.33,73.11,73.06,44.05,29.30,21.26$. EIMS: 188 (M, 0.3), 91 (100.0). HRMS: calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}$, 188.1201; found, 188.1198.

1-(Benzyloxymethyl)-2-methylenecyclohexane (29b). The procedure described above for compound 29a was followed starting from ketone 23b ($3.8 \mathrm{~g}, 17.4 \mathrm{mmol}$), methyltriphenylphosphonium bromide ($9.35 \mathrm{~g}, 26.2 \mathrm{mmol}$), and BuLi (1.6 M in hexane, $16.4 \mathrm{~mL}, 26.2 \mathrm{mmol}$) to give product 29b as an oil ($3.3 \mathrm{~g}, 88 \%$). ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 7.38$ and $7.32(5 \mathrm{H}, \mathrm{m})$, $4.74(1 \mathrm{H}, \mathrm{s})$ and $4.61\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}=\right), 4.56(2 \mathrm{H}, \mathrm{s}), 3.67(1 \mathrm{H}, \mathrm{dd}$, $\mathrm{J}=6.3$ and 9.0 Hz) and $3.49(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.5$ and 9.0 Hz$)$, $2.42(1 \mathrm{H}, \mathrm{m}), 2.28$ and $2.25(1 \mathrm{H}, \mathrm{m}), 2.27(1 \mathrm{H}, \mathrm{m}), 1.90(1 \mathrm{H}$, s), $1.70(2 \mathrm{H}, \mathrm{m}), 1.47(2 \mathrm{H}, \mathrm{m}), 1.32(1 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR: 150.30 , 138.66, 128.34, 127.66, 127.49, 106.02, 73.09, 72.23, 43.00, 35.62, 31.17, 28.57, 24.72. El-MS: 216 (M, 2.1), 91 (100.0). HRMS: calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}, 216.1514$; found, 216.1514.
(Z)- and (E)-(2-Benzyloxymethyl)-1-bromo-1-bromomethylcyclobutane (30a). Pyridinium hydrobromide perbromide ($3.4 \mathrm{~g}, 10.6 \mathrm{mmol}$) was added in portions to a sol ution of methylenecycl obutane 29a ($2.0 \mathrm{~g}, 10.6 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80$ mL) at $0^{\circ} \mathrm{C}$ with stirring. The stirring was continued at $0^{\circ} \mathrm{C}$ for 3 h whereupon the reaction was quenched with saturated aqueous $\mathrm{NaHSO}_{3}(50 \mathrm{~mL})$. The product was extracted with ether; the combined organic phase was washed with brine and it was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation afforded the crude product which was chromatographed on a silica gel column (hexanes/ethyl acetate, 100:1 $\rightarrow 50: 1$) to give compound 30a as an oil ($3.50 \mathrm{~g}, 95 \%$). ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 7.40(5 \mathrm{H}, \mathrm{m}), 4.55$ $(2 \mathrm{H}, \mathrm{m}), 4.08$ and $3.74\left(1 \mathrm{H}, \mathrm{J}_{\mathrm{AB}}=11.4 \mathrm{~Hz}\right)$ and $3.90(1 \mathrm{H}, \mathrm{s}$, 1:1), $3.62(2 \mathrm{H}, \mathrm{m}), 3.44(\mathrm{~m})$ and $2.82(1 \mathrm{H}, \mathrm{m}, 1: 1), 2.61(\mathrm{~m})$ and $2.46(2 \mathrm{H}, \mathrm{m}, 3: 1), 2.20(\mathrm{~m}), 1.98(\mathrm{~m})$ and $1.88(2 \mathrm{H}, \mathrm{m}, 1: 2$: 1). EI-MS: 350 ($\mathrm{M}, 0.1$), 348 ($\mathrm{M}, 0.2$), 346 ($\mathrm{M}, 0.1$), 91 (100.0). HRMS: calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}^{79} \mathrm{Br}_{2}, 345.9568$; found 345.9564 . Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{OBr}_{2}$: C, 44.86; $\mathrm{H}, 4.63$. F ound: $\mathrm{C}, 44.67$; H, 4.57.
(E)-2-(Benzyloxymethyl)-1-bromo-1-bromomethylcyclohexane (30b). The procedure described for compound 30a was followed using methylenecyclohexane 29b (1.6 g, 7.4 mmol) and pyridinium hydrobromide perbromide ($2.4 \mathrm{~g}, 7.5$ mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL}$) to give product $\mathbf{3 0 b}$ as an oil (2.70 g, 98\%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.40(5 \mathrm{H}, \mathrm{m}), 4.56(2 \mathrm{H}, \mathrm{s}), 4.32$
and $3.86\left(2 \mathrm{H}, \mathrm{J}_{\mathrm{AB}}=10.2 \mathrm{~Hz}\right), 3.71(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=5.8$ and 9.7 Hz) and $3.30(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=6.4$ and 9.7 Hz$), 2.17(1 \mathrm{H}, \mathrm{m}), 2.05$ $(1 \mathrm{H}, \mathrm{m}), 1.74(5 \mathrm{H}, \mathrm{m}), 1.35(2 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR: 138.34, 128.39, 127.54, 127.42, 73.45, 73.21, 42.37, 42.59, 39.44, 26.59, 24.83, 22.77. EI-MS: 297 (0.2) and 295 ($0.3, \mathrm{M}-\mathrm{Br}$), 91 (100.0). HRMS: calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}^{79} \mathrm{Br}(\mathrm{M}-\mathrm{Br})$, 295.0692; found, 295.0697. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{Br}_{2} \mathrm{O}: \mathrm{C}, 47.90 ; \mathrm{H}, 5.36 ; \mathrm{Br}$, 42.49. Found: C, 48.07; H, 5.46; Br, 42.61 .

1-(2-Benzyloxy-1-bromo)ethyl)-1-bromomethylcyclopropane (31). Bromine was added dropwise with stirring to a solution of compound 29a ($200 \mathrm{mg}, 1.06 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(20 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ till the col or did not fade. The reaction was quenched with saturated aqueous $\mathrm{NaHSO}_{3}(10 \mathrm{~mL})$ and the product was extracted with ether. The combined organic phase was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation gave the crude product, which was chromatographed on a silica gel column (hexanes/ethyl acetate, 100:1 \rightarrow 50:1) to give compound 31 as an oil ($260 \mathrm{mg}, 70 \%$). ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): δ $7.40(5 \mathrm{H}, \mathrm{m}), 4.60(2 \mathrm{H}, \mathrm{s}), 4.20(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}), 3.92(2 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}), 3.70$ and $3.54(2 \mathrm{H}, \mathrm{J} \mathrm{AB}=11.1 \mathrm{~Hz}), 1.15-0.95$ (4H, m). ${ }^{13}$ C NMR: 137.77, 128.53, 127.80, 127.76, 73.19, 72.59, $68.48,59.73,40.75,19.28,17.44$. EI-MS: 350 (M, 0.1), 348 (M, 0.2), 346 ($\mathrm{M}, 0.1$), 91 (100.0). HRMS: calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{Br}_{2} \mathrm{O}$, 345.9568; found, 345.9568.
(Z)- and (E)-1-(Benzyloxymethyl)-2-bromomethylenecyclobutane (32), 9-\{ [2-(Benzyloxymethyl)cyclobut-1-en-1-yl]methyl\}adenine (33), and Compounds 34 and 35. Method A. A mixture of compound $\mathbf{3 0 a}$ ($180 \mathrm{mg}, 0.52 \mathrm{mmol}$), adenine ($180 \mathrm{mg}, 0.73 \mathrm{mmol}$), and flame-dried $\mathrm{K}_{2} \mathrm{CO}_{3}(800 \mathrm{mg}$, 5.8 mmol) in DMF (8 mL) was stirred at $110^{\circ} \mathrm{C}$ for 18 h . The solids were filtered off and washed with DMF. The solvent was evaporated and the crude product was chromatographed on a silica gel column $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 30: 1 \rightarrow 20: 1\right)$ to give first compound 32 ($97 \mathrm{mg}, 70 \%$) as an oil, followed by a mixture of isomers $34+35$ ($39 \mathrm{mg}, 4.6 \%$) as a gum, and cycl obutene 33 $(30 \mathrm{mg}, 3.5 \%)$ as a solid.
The ${ }^{1}$ H NMR spectrum of $\mathbf{3 4}$ and 35 indicated a Z/ E ratio of $2: 1$.

Compound 32. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.30(5 \mathrm{H}, \mathrm{m}), 6.10(\mathrm{~s})$ and $5.95(\mathrm{~s}, 2: 1,1 \mathrm{H}), 4.56(2 \mathrm{H}, \mathrm{s}), 4.60(\mathrm{dd}, \mathrm{J}=6.3$ and 4.0 $\mathrm{Hz})$ and $4.40(2 \mathrm{H}, \mathrm{m}, 1: 2), 3.23(\mathrm{~m}, 1 \mathrm{H}), 2.75(\mathrm{~m})$ and $2.62(2 \mathrm{H}$, m, 1:2), 2.23 ($1 \mathrm{H}, \mathrm{m}$), 1.92 (1H, m). CI-MS: 269 (M + H, 3.4), 267 (M + H, 3.8), 91 (100.0). HRMS: calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}$ (M $\mathrm{Br})$, 187.1123; found, 187.1121.

Z- and E-I somers 34 and 35. UV max (EtOH): 261 nm (ϵ 13 700), 209 (23 900). ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 8.39$ ($1 \mathrm{H}, \mathrm{s}$), 8.22 (s) and $7.90(1 \mathrm{H}, \mathrm{s}, 1: 2), 7.38,7.27$ and $7.20(5 \mathrm{H}, \mathrm{m}), 6.98$ (s) and $6.77(1 \mathrm{H}, \mathrm{s}, 2: 1), 5.89(2 \mathrm{H}, \mathrm{s}), 4.59(\mathrm{~s})$ and $4.40(2 \mathrm{H}, \mathrm{s}$, 2:1), $3.66(\mathrm{~m})$ and $3.50(3 \mathrm{H}, \mathrm{m}), 2.94(2 \mathrm{H}, \mathrm{m}), 2.31(1 \mathrm{H}, \mathrm{m})$, $1.99(\mathrm{~m})$ and $1.85(1 \mathrm{H}, \mathrm{m}, 2: 1)$. The Z / E ratio (2:1) was determined from integration of the appropriate ${ }^{1} \mathrm{H}$ NMR signals.
Compound 33. Mp 187-190 ${ }^{\circ} \mathrm{C}$. UV max (EtOH): 261 nm ($\epsilon 13500$), 207 ($\epsilon 23800$). ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 8.37$ ($1 \mathrm{H}, \mathrm{s}$) and $7.81\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{8}\right.$ and $\left.\mathrm{H}_{2}\right), 7.34(5 \mathrm{H}, \mathrm{m}), 5.81\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right), 4.87$ ($2 \mathrm{H}, \mathrm{s}$), $4.51(2 \mathrm{H}, \mathrm{s}), 3.99(2 \mathrm{H}, \mathrm{s}), 2.39(2 \mathrm{H}, \mathrm{s}), 2.34(2 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR: 155.68, 153.41, 153.04, 142.76, 140.81, 138.47, 136.25, $128.72,128.05,127.93,112.68,73.21,41.47,27.90,27.57$. FABMS: 322 ($M+H, 100.0$).
Method B. A mixture of adenine ($180 \mathrm{mg}, 0.73 \mathrm{mmol}$) and NaH (50% in mineral oil, $35 \mathrm{mg}, 0.73 \mathrm{mmol}$) in DMF (6 mL) was stirred at room temperature under N_{2} for 4 h . A solution of compound 30a ($180 \mathrm{mg}, 0.52 \mathrm{mmol}$) in DMF (10 mL) was added. The resulting mixture was then stirred at $100^{\circ} \mathrm{C}$ for 10 h . Evaporation of all solvents and workup as described above gave compound 32 ($100 \mathrm{mg}, 72 \%$), isomers 34 and 35 ($35 \mathrm{mg}, 4 \%$), and cyclobutene 33 ($30 \mathrm{mg}, 3.5 \%$).
(E)- and (Z)-4-(Benzyloxymethyl)-1-oxaspiro[2,3]hexanes (36a). m-Chloroperoxybenzoic acid (m-CPBA, 85\%, 1.96 $\mathrm{g}, 9.7 \mathrm{mmol}$) was added in portions to a stirred mixture of compound 29a ($1.4 \mathrm{~g}, 7.4 \mathrm{mmol}$) and $\mathrm{NaHCO}_{3}(0.87 \mathrm{~g}, 10.36$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 4 h whereupon saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}$ was added to quench the reaction. The product was extracted with ether $(3 \times 50 \mathrm{~mL})$. The organic phase was washed with aqueous
NaHCO_{3} and brine and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent gave the crude product which was chromatographed on a silica gel column (hexanes/ethyl acetate, 20:1 \rightarrow $15: 1 \rightarrow 10: 1$) to give compound $36 \mathrm{a}(1.50 \mathrm{~g}, 100 \%)$ as an oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.37(5 \mathrm{H}, \mathrm{m}), 4.58$ and $4.50(2 \mathrm{H}, 2 \mathrm{~s}, 1.2$: 1), $3.63(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz})$ and $3.42(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.8 \mathrm{~Hz}, 1.2: 1)$, 3.06 and $2.95(1 \mathrm{H}, \mathrm{m}, 1.2: 1), 2.90$ and $2.65(\mathrm{~J}$ AB $=4.5 \mathrm{~Hz}), 2.75$ and $2.73\left(2 \mathrm{H}, \mathrm{J}_{\mathrm{AB}}=4.5 \mathrm{~Hz}, 1: 1.2,\right), 2.42(\mathrm{~m})$ and $2.22(\mathrm{~m}, 2 \mathrm{H})$, $2.03(\mathrm{~m})$, $1.84(\mathrm{~m})$ and $1.70(\mathrm{~m}, 2 \mathrm{H})$. EI-MS: 204 (M, 0.8), 91 (100.0). HRMS: calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2}$, 204.1150; found, 204.1151.
(E)- and (Z)-4-(Benzyloxymethyl)-1-oxaspiro[2,5]octanes (36b). The procedure for compound 36a was followed using methylenecycl ohexane 29b ($3.0 \mathrm{~g}, 13.9 \mathrm{mmol}$), $\mathrm{NaHCO}_{3}(1.75$ $\mathrm{g}, 20.8 \mathrm{mmol}$), and m-CPBA ($3.34 \mathrm{~g}, 19.43 \mathrm{mmol}$) to give 36b ($2.7 \mathrm{~g}, 84 \%$) as an oil. ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 7.38$ ($5 \mathrm{H}, \mathrm{m}$), 4.43 $(2 \mathrm{H}, \mathrm{m}), 2.00(1 \mathrm{H}, \mathrm{m}), 1.85-1.44(8 \mathrm{H}, \mathrm{m})$. Resolved signals of isomers: isomer A, 3.50 (dd, J = 5.4 and 8.9 Hz) and 3.25 (2 H , $\mathrm{dd}, \mathrm{J}=5.4$ and 9.1 Hz$), 2.94(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.5 \mathrm{~Hz})$ and $2.76(1 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=4.5 \mathrm{~Hz}$); isomer $\mathrm{B}, 3.40$ and $3.34(2 \mathrm{H}, \mathrm{J} \mathrm{AB}=8.4 \mathrm{~Hz})$, $2.54(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.2 \mathrm{~Hz})$. The isomeric ratio was 1:1. EI-MS: 232 (M, 0.5), 91 (100.0). HRMS: calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{2}, 232.1463$; found, 232.1464.
(Z)-9-\{[2-(Benzyloxymethyl)-1-hydroxycyclobutyl]methyl\}adenine (37a) and (E)-9-\{ [2-(Benzyloxymethyl)-1-hydroxycyclobutyl]methyl\} adenine (38a). A mixture of adenine ($1.5 \mathrm{~g}, 11.1 \mathrm{mmol}$) and NaH (50% in mineral oil, 0.45 $\mathrm{g}, 9.3 \mathrm{mmol}$) in dry DMF (50 mL) was stirred at room temperature for 4 h under N_{2}. Compound $\mathbf{3 6 a}$ ($1.6 \mathrm{~g}, 7.8 \mathrm{mmol}$) in DMF (5 mL) was then added and the stirring was continued at $110{ }^{\circ} \mathrm{C}$ for 10 h . After cool ing, the solvent was evaporated and the crude product was chromatographed on silica gel $\left(\mathrm{CH}_{2}-\right.$ $\mathrm{Cl}_{2} / \mathrm{MeOH}, 30: 1 \rightarrow 20: 1 \rightarrow 10: 1$) to give the Z-isomer (0.9 g , 34%) and E-isomer ($0.85 \mathrm{~g}, 32 \%$) as foams.

Z-Isomer 37a. UV max (EtOH): $261 \mathrm{~nm}(\epsilon 13$ 900), 209 (ϵ $25000) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 8.40(1 \mathrm{H}, \mathrm{s})$ and $8.08\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{8}\right.$ and H_{2}), $7.37(5 \mathrm{H}, \mathrm{m}), 6.00\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right), 4.50(1 \mathrm{H}$, brs, OH$)$, $4.43(2 \mathrm{H}, \mathrm{s}), 4.37$ and $4.28\left(2 \mathrm{H}, \mathrm{J}_{\mathrm{AB}}=14 \mathrm{~Hz}\right), 3.63(\mathrm{~m})$ and $3.52(2 \mathrm{H}, \mathrm{m}), 2.50(1 \mathrm{H}, \mathrm{m}), 2.10(2 \mathrm{H}, \mathrm{m}), 1.95(1 \mathrm{H}, \mathrm{m}), 1.77$ (1H, m). ${ }^{13} \mathrm{C}$ NMR: 155.97, 152.74, 150.34, 141.76, 137.72, 128.39, 127.70, 127.50, 118.74, 75.13, 73.13, 69.97, 51.66, 41.25, 32.40, 16.01. FAB-MS: 340 (M, 100.0).

E-Isomer 38a. UV max (EtOH): $261 \mathrm{~nm}(\epsilon 14200)$, 210 (ϵ $23900)$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 8.40(1 \mathrm{H}, \mathrm{s})$ and $8.00\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{8}\right.$ and H_{2}), $7.37(5 \mathrm{H}, \mathrm{m}), 6.00\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right), 4.50(1 \mathrm{H}$, brs, OH$)$, $4.37(2 \mathrm{H}, \mathrm{s}), 4.52$ and $4.25\left(2 \mathrm{H}, \mathrm{J}_{A B}=14 \mathrm{~Hz}\right), 3.60(2 \mathrm{H}, \mathrm{m})$, $2.75(1 \mathrm{H}, \mathrm{m}), 1.94(1 \mathrm{H}, \mathrm{m}), 1.80(2 \mathrm{H}, \mathrm{m}), 1.55(1 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR: $155.88,152.58,150.32,142.14,137.93,128.41,127.75$, 118.72, 75.46, 73.13, 69.03, 47.87, 41.75, 31.57, 15.40. FABMS: 340 (M, 100.0).
(Z)- and (E)-9-\{[2-(Benzyloxymethyl)-1-hydroxycyclohexyl]methyl \}adenine (37b and 38b). The procedure for compounds 37a and 38a was followed using compound 36b $(2.7 \mathrm{~g}, 11.6 \mathrm{mmol})$, adenine ($2.35 \mathrm{~g}, 17 \mathrm{mmol}$), and $\mathrm{NaH}(50 \%$ in mineral oil, $0.72 \mathrm{~g}, 15 \mathrm{mmol}$) to give Z- and E -isomers 37b and 38b as a gum ($1.9 \mathrm{~g}, 45 \%$). The E / Z ratio was 1:1. UV max (EtOH): $261 \mathrm{~nm}(\epsilon 14700)$, 209 ($\epsilon 20600$). ${ }^{1 H} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$): $\delta 8.20(1 \mathrm{H}, \mathrm{s}), 8.08$ and $8.06\left(2 \mathrm{~s}, 1 \mathrm{H}, 1: 1, \mathrm{H}_{8}\right.$ and $\left.\mathrm{H}_{2}\right), 7.40\left(2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.37$ and $7.20(5 \mathrm{H}, \mathrm{m}), 5.05$ and $4.80(1 \mathrm{H}$, $\mathrm{s}, 1: 1, \mathrm{OH}), 4.45(3 \mathrm{H}, \mathrm{m}), 4.29$ and $4.24(1 \mathrm{H}, \mathrm{J} \mathrm{AB}=14.4 \mathrm{~Hz})$, $3.97(\mathrm{~d}, \mathrm{~J}=14.4 \mathrm{~Hz}), 3.81(\mathrm{~m})$ and $3.74(\mathrm{~m}, 2 \mathrm{H}), 3.60(1 \mathrm{H}, \mathrm{m})$, 1.1-1.8 (8H, m). FAB-MS: 369 (M, 100.0).
(Z)-9-\{[2-(Benzyloxymethyl)-1-methylsulfonylcyclobutyl]methyl\}adenine (39). Methylsulfonyl chloride ($\mathrm{MsCl}, 0.43 \mathrm{~mL}, 5.4 \mathrm{mmol}$) was added dropwise to a stirred mixture of compound 37a ($0.61 \mathrm{~g}, 1.8 \mathrm{mmol}$) and 4 -($\mathrm{N}, \mathrm{N}-$ dimethylamino)pyridine (DMAP, $0.26 \mathrm{~g}, 2.15 \mathrm{mmol}$) in $\mathrm{CH}_{2}-$ $\mathrm{Cl}_{2}(25 \mathrm{~mL})$ and pyridine (5 mL) at $0{ }^{\circ} \mathrm{C}$. The stirring was continued at room temperature for 24 h whereupon $\mathrm{MeOH} /$ $\mathrm{H}_{2} \mathrm{O}$ (2:1, 1 mL) was added. After 1 h , the solvents were evaporated and the crude product was chromatographed on a silica gel column ($\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 40: 1 \rightarrow 30: 1 \rightarrow 20: 1$) to give compound 39 as a gum ($256 \mathrm{mg}, 50 \%$) and recovered starting material 37a ($180 \mathrm{mg}, 30 \%$). ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 8.36$ ($1 \mathrm{H}, \mathrm{s}$) and $8.18\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{8}\right.$ and H_{2}, adenine), $7.37(5 \mathrm{H}, \mathrm{m}), 6.60(2 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{NH}_{2}\right), 4.65(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.4 \mathrm{~Hz}), 4.46(2 \mathrm{H}, \mathrm{s}), 3.50(2 \mathrm{H}, \mathrm{s})$,
$3.08\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.75(1 \mathrm{H}, \mathrm{m}), 2.46(1 \mathrm{H}, \mathrm{m}), 2.0(3 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR: $155.84,153.03,150.69,141.62,141.71,137.95,128.41$, $127.75,118.85,89.55,73.09,69.44,49.59,42.31,30.10,17.54$. FAB-MS: 418 (M, 62.0), 136 (100.0).
(E)-9-\{[2-(Benzyloxymethyl)-1-methylsulfonylcyclobutyl]methyl\}adenine (40). The procedure described above was used with compound 38 a ($0.80 \mathrm{~g}, 2.36 \mathrm{mmol}$), DMAP ($0.346 \mathrm{~g}, 2.83 \mathrm{mmol}$), $\mathrm{M} \mathrm{sCl}(0.553 \mathrm{~mL}, 7.1 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(30$ $\mathrm{mL})$, and pyridine (5 mL) to give gummy product $40(678 \mathrm{mg}$, 69%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta 8.36(1 \mathrm{H}, \mathrm{s})$ and $8.12\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{2}\right.$ and $\left.\mathrm{H}_{8}\right), 7.37(5 \mathrm{H}, \mathrm{m}), 6.50\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right), 4.94$ and $4.63(2 \mathrm{H}$, $\left.\mathrm{J}_{\mathrm{AB}}=15.3 \mathrm{~Hz}\right), 4.50$ and $4.47\left(2 \mathrm{H}, \mathrm{J}_{\mathrm{AB}}=12 \mathrm{~Hz}\right), 3.75(1 \mathrm{H}, \mathrm{dd}$, $\mathrm{J}=10.4$ and 4.7 Hz) and $3.66(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=6.0$ and 10.5 Hz$)$, $3.50(1 \mathrm{H}, \mathrm{m}), 3.14\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.35(2 \mathrm{H}, \mathrm{m}), 2.00(2 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR: 155.85, 152.79, 150.71, 141.68, 141.70, 137.81, 127.78, $127.68,118.80,89.58,73.27,67.64,45.54,44.61,40.45,30.15$, 16.04. FAB-MS: 418 (M, 58.7), 136 (100.0).
(Z)- and (E)-9-\{ [2-(Benzyloxymethyl)cyclobutylidene]methyl\} adenine (34 and 35). Freshly sublimed tBuOK (842 $\mathrm{mg}, 7.5 \mathrm{mmol}$) was added to a mixture of compounds 39 and $40(2.08 \mathrm{~g}, 5 \mathrm{mmol})$ in THF (50 mL) with stirring at $0^{\circ} \mathrm{C}$. The stirring was continued at room temperature for 6 h , the reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$, and $1 \mathrm{M} \mathrm{HCl}(1.0 \mathrm{~mL}$) was added dropwise. The vol atile components were evaporated and the crude product was chromatographed on a silica gel column $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 30: 1 \rightarrow 20: 1\right)$ to give products 34 and 35 as a solid ($1.40 \mathrm{~g}, 87 \%$). ${ }^{1} \mathrm{H}$ NMR spectrum was identical, except the isomeric ratio, with that of the product obtained from dibromo derivatives 30a. EI-MS: 321 (M, 21.0), 91 (100.0). HRMS: calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}, 321.1590$; found, 321.1587.
(E)-9-[(2-Methylenecyclobutylidene)methyl]adenine (41). The procedure described above was employed using a two molar excess of tBuOK ($840 \mathrm{mg}, 7.5 \mathrm{mmol}$) and mesylates 39 and $40(1.04 \mathrm{~g}, 2.5 \mathrm{mmol})$ in THF (30 mL) to give product 41 ($414 \mathrm{mg}, 78 \%$). Mp 229-230 ${ }^{\circ} \mathrm{C}$. UV max (EtOH): $260 \mathrm{~nm}(\epsilon$ 23 500), 205 ($\epsilon 17$ 500). ${ }^{1} \mathrm{H}$ NMR (DMSO-d d_{6}): $\delta 8.27$ ($1 \mathrm{H}, \mathrm{s}$) and $8.17\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{8}\right.$ and $\left.\mathrm{H}_{2}\right), 7.39\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right), 7.34(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{H}_{1^{\prime}}\right), 5.40\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{6^{\prime}}\right), 4.86\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{6^{\prime \prime}}\right), 2.99\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{3}\right)$, $2.71\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{4}\right) .{ }^{13} \mathrm{C}$ NMR: 157.23, 154.20, 149.59, 147.20, 138.99, 133.45, 119.09, 111.43, 106.09, 29.55, 27.55. EI-MS: 213 (M, 100.0). HRMS: calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{5}, 213.1014$; found, 213.1020. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~N}_{5}$: C, 61.96; $\mathrm{H}, 5.20 ; \mathrm{N}, 32.84$. Found: C, 61.79; H, 5.25; N, 33.01.
(Z)-9-\{[2-(Hydroxymethyl)cyclobutylidene]methyl\}adenine(21) and (E)-9-\{[2-(Hydroxymethyl)cyclobutylidene]methyl\}adenine (22). Method A. Deprotection of O-Benzyl Derivatives 34 and 35 . Boron trichloride ($1 \mathrm{M} \mathrm{in} \mathrm{CH}_{2} \mathrm{Cl}_{2}$, $25.8 \mathrm{~mL}, 25.8 \mathrm{mmol}$) was added dropwise with stirring to a solution of isomeric mixture 34 and 35 ($1.38 \mathrm{~g}, 4.3 \mathrm{mmol}$) obtained from mesylates 39 and $\mathbf{4 0}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ at -78 ${ }^{\circ} \mathrm{C}$ under N_{2}. Thestirring was continued for 4 h . A 1:1 mixture of $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL) was then added. The solvents were evaporated and the syrupy product was stirred with MeOH $(30 \mathrm{~mL})$ and $\mathrm{NaHCO}_{3}(2.2 \mathrm{~g}, 25.8 \mathrm{mmol})$ for 2 h . The solids were filtered off and washed with $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1,2 \times 10$ mL). The combined filtrates were evaporated and the crude product was chromatographed on a silica gel column using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(30: 1 \rightarrow 20: 1 \rightarrow 15: 1$) to give a mixture of $\mathbf{2 1}$ and $\mathbf{2 2}$ ($824 \mathrm{mg}, 83 \%$) as a solid. Chromatography on a column of neutral alumina $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 40: 1 \rightarrow 30: 1 \rightarrow 20: 1\right)$ gave the E-isomer 22 ($676 \mathrm{mg}, 68 \%$) fol lowed by Z-isomer 21 (109 $\mathrm{mg}, 11 \%)$.

E-I somer 22. Mp 231-233 ${ }^{\circ} \mathrm{C}$. UV max (EtOH): $261 \mathrm{~nm}(\epsilon$ 13600), 227 ($\epsilon 24400$). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{DMSO}^{2} \mathrm{~d}_{6}$): $\delta 8.14$ ($2 \mathrm{H}, \mathrm{s}$, H_{8} and H_{2}), $7.33\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right), 6.90\left(\mathrm{H}, \mathrm{m}, \mathrm{H}_{1^{\prime}}\right), 4.77(1 \mathrm{H}, \mathrm{t}, \mathrm{J}$ $=3.6 \mathrm{~Hz}, \mathrm{OH}), 3.54\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=5.4 \mathrm{~Hz}, \mathrm{H}_{6}\right), 3.20\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{5}\right)$, $2.87\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{3}\right), 2.10\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{4^{\prime}}\right), 1.79\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{4^{\prime}}\right) .{ }^{13} \mathrm{C}$ NMR: 156.46, 153.25, 148.69, 138.48, 136.15, 118.36, 112.31, 64.06, 44.25, 27.69, 21.14. EI-MS: 231 (M, 100.0). HRMS: calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}$, 231.1120; found, 231.1121. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}: \mathrm{C}, 57.13 ; \mathrm{H}, 5.67$; $\mathrm{N}, 30.28$. Found: C, $57.29 ; \mathrm{H}$, 5.79; N, 30.40.

Z-I somer 21. Mp 229-231 ${ }^{\circ} \mathrm{C}$. UV max (EtOH): $261 \mathrm{~nm}(\epsilon$ 15 200), 227 ($\epsilon 24000$). ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$): $\delta 8.38$ ($1 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{H}_{8}\right), 8.14\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{2}\right), 7.29\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right), 6.72\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{1^{\prime}}\right), 4.83$
$(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=3.0 \mathrm{~Hz}, \mathrm{OH}), 3.42\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}_{5^{\prime}}+\mathrm{H}_{6^{\prime}}\right.$, overlapped with $\mathrm{H}_{2} \mathrm{O}$), $2.81\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{3}\right), 2.71\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{3^{\prime \prime}}\right), 2.14(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{H}_{4^{\prime}}\right), 1.77\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{4^{\prime}}\right) .{ }^{13} \mathrm{C}$ NMR: 157.10, 153.88, 149.77, 140.10, 137.84, 119.18, 113.92, 63.36, 46.04, 28.05, 21.78. EIMS: 231 (M, 100.0). HRMS: calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}, 231.1120$; found, 231.1120. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}: \mathrm{C}, 57.13 ; \mathrm{H}, 5.67$; N, 30.28. Found: C, $57.00 ; \mathrm{H}, 5.73 ; \mathrm{N}, 30.30$.
Method B. (E)-9-\{[2-(Hydroxymethyl)cyclobutylidene]methyl\} adenine (22) from Dimethylenecyclobutane 41. 9-Borabicyclo[3.3.1]nonane (9-BBN, 0.5 M in THF, 7.5 mL) was slowly added to a solution of compound 41 ($400 \mathrm{mg}, 4.7 \mathrm{mmol}$) in THF (5 mL) at $0{ }^{\circ} \mathrm{C}$ under N_{2}. The mixture was stirred for 30 min and then for 8 h at room temperature. A solution of $5 \% \mathrm{NaOH}$ in $50 \% \mathrm{H}_{2} \mathrm{O}_{2}$ (10 mL) was added, and the resulting mixture was stirred for 16 h and lyophilized. The residue was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ (10:1) with the aid of a sonicator. The combined organic portions were evaporated and the residue was chromatographed on a silica gel column $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ $\mathrm{MeOH}, 15: 1 \rightarrow 12: 1$) to give compound 22 ($269 \mathrm{mg}, 62 \%$) identical (TLC, ${ }^{1} \mathrm{H}$, and ${ }^{13} \mathrm{C}$ NMR) to the product obtained by method A.
(Z)-9-\{[1-Hydroxy-2-(hydroxymethyl)cyclobutyl]methyl\}adenine (42). The deprotection was performed as described for compounds 21 and 22 (method A), using the Z-isomer 37a ($226 \mathrm{mg}, 0.67 \mathrm{mmol}$) and $\mathrm{BCl}_{3}\left(1.0 \mathrm{M}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $3.35 \mathrm{mmol}, 3.35 \mathrm{~mL}$) at $-78^{\circ} \mathrm{C}$ for 4 h . Chromatography (CH_{2-} $\mathrm{Cl}_{2} / \mathrm{MeOH}, 15: 1 \rightarrow 10: 1$) afforded product 42 ($117 \mathrm{mg}, 78 \%$). Mp 208-211 ${ }^{\circ} \mathrm{C}$. UV max (EtOH): $260 \mathrm{~nm}(\epsilon 14300)$, 209 (ϵ $18600) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 8.09(1 \mathrm{H}, \mathrm{s})$ and $8.02\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{8}\right.$ and H_{2}), $7.39\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right), 5.30(1 \mathrm{H}$, brs, OH$), 4.25$ and 4.17 $(2 \mathrm{H}, \mathrm{J} \mathrm{AB}=14 \mathrm{~Hz}), 3.70(1 \mathrm{H}, \mathrm{brs}, \mathrm{OH}), 3.53(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=6.8$ and 10.7 Hz) and $3.41(1 \mathrm{H}, \mathrm{m})$, $2.27(1 \mathrm{H}, \mathrm{m})$, $1.98(1 \mathrm{H}, \mathrm{m})$, $1.82(1 \mathrm{H}, \mathrm{m}), 1.67(1 \mathrm{H}, \mathrm{m}), 1.50(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR: 156.22, $152.74,150.46,142.21,118.48,74.35,61.16,51.27,44.46$, 31.27, 16.58. EI-MS: 249 (M, 6.9), 148 (100.0). HRMS: calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{2}, 249.1226$; found, 249.1224. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{2} \times 0.6 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 50.80 ; \mathrm{H}, 6.28 ; \mathrm{N}, 26.93$. Found: C, 50.84; H, 6.15; N, 27.39. 32.84.
(E)-9-\{[1-Hydroxy-2-(hydroxymethyl)cyclobutyl]methyl\}adenine (43). The reaction was carried out as described above for the Z-isomer 42, starting from the E-isomer 38a ($204 \mathrm{mg}, 0.6 \mathrm{mmol}$) and $\mathrm{BCl}_{3}\left(1.0 \mathrm{M}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 3.0 \mathrm{mmol}$, 3.0 mL) to give compound 43 ($112 \mathrm{mg}, 75 \%$). Mp 207-209 ${ }^{\circ} \mathrm{C}$. UV max (EtOH): $260 \mathrm{~nm}(\epsilon 14600), 210$ ($\epsilon 18900$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 8.14(1 \mathrm{H}, \mathrm{s})$ and $8.05\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{8}\right.$ and $\left.\mathrm{H}_{2}\right), 7.25(2 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{NH}_{2}\right), 5.58(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 4.56(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 4.53$ and $4.06(2 \mathrm{H}$, $\left.\mathrm{J}_{A B}=14 \mathrm{~Hz}\right), 3.50(2 \mathrm{H}, \mathrm{m}), 2.43(1 \mathrm{H}, \mathrm{m}), 1.82(1 \mathrm{H}, \mathrm{m}), 1.70$ ($1 \mathrm{H}, \mathrm{m}$), 1.56 ($1 \mathrm{H}, \mathrm{m}$), $1.43(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR: 156.31, 152.86, $150.56,142.56,118.41,75.04,60.27,49.97,46.64,31.27,15.69$. FAB-MS: 249 (M, 4.9), 148 (100.0). EI-HRMS: calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{2}, 249.1226$; found, 249.1224. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}_{2}$: C, 52.99; H, 6.07; N, 28.10. Found: C, 52.89; H, 6.09; N, 28.33.

Cyclic Ketal 44. A mixture of compound $\mathbf{4 2}$ ($26 \mathrm{mg}, 0.064$ mmol), 2,2-dimethoxypropane (5 mL), and TsOH $\times \mathrm{H}_{2} \mathrm{O}(50$ $\mathrm{mg}, 0.26 \mathrm{mmol}$) in DMF (1 mL) was stirred for 8 h at room temperature, and then it was cool ed to $0^{\circ} \mathrm{C}$. Triethylamine (1 mL) was added and the mixture was evaporated. Chromatography on a column of silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{4} \mathrm{OH}, 100\right.$: 2:0.1 \rightarrow 90:2:0.1) gave product 44 ($23 \mathrm{mg}, 77 \%$). Mp 244-247 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 8.14(1 \mathrm{H}, \mathrm{s})$ and $8.00\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{8}\right.$ and H_{2}, adenine), $7.20\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right), 4.28$ and $4.19\left(2 \mathrm{H}, \mathrm{J}_{\mathrm{AB}}=14\right.$ $\mathrm{Hz}), 3.83(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=5.1$ and 12.3 Hz$)$ and $3.53(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$ 3.0 and 12.1 Hz), $2.32(1 \mathrm{H}, \mathrm{m}), 1.98(2 \mathrm{H}, \mathrm{m}), 1.75(2 \mathrm{H}, \mathrm{m})$, $1.34(3 \mathrm{H}, \mathrm{s})$ and $1.30(3 \mathrm{H}, \mathrm{s}, \mathrm{Me} \mathrm{C}) .{ }^{13} \mathrm{C}$ NMR: 156.38, 152.91, 150.52, 142.0, 118.55, 97.97, 74.56, 60.94, 50.28, 33.90, 31.34, 29.52, 25.33, 17.94. EI-MS: 289 (M, 16.5), 55 (100.0). HRMS: calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{2}, 289.1539$; found, 289.1540. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{2}$: C, 58.12; H, 6.62; N, 24.20. Found: C, 57.89; H, 6.82; N, 24.62.
9-\{2-[(Benzyloxymethyl)cyclohex-1-en-1-yl]methyl\}adenine (45). Method A. A mixture of adenine ($468 \mathrm{mg}, 3.47$ mmol) and NaH (50% in mineral oil, $166 \mathrm{mg}, 3.47 \mathrm{mmol}$) in DMF (30 mL)
was stirred at room temperature for 4 h . A solution of dibromide 30b ($1.30 \mathrm{~g}, 3.47 \mathrm{mmol}$) in DMF (10 mL) was then added. The resulting mixture was stirred at $100^{\circ} \mathrm{C}$ for 10 h under N_{2}. Evaporation of all solvents and workup as described above gave product 45 ($0.5 \mathrm{~g}, 41 \%$). Mp $165-167^{\circ} \mathrm{C}$. UV max (EtOH): $260 \mathrm{~nm}(\epsilon 14700)$, 209 ($\epsilon 29700$). ¹H NMR (DMSO$\left.\mathrm{d}_{6}\right): \delta 8.18(1 \mathrm{H}, \mathrm{s})$ and $8.00\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{2}\right.$ and $\left.\mathrm{H}_{8}\right), 7.29(7 \mathrm{H}, \mathrm{m}$, Ph and $\left.\mathrm{NH}_{2}\right), 4.80(2 \mathrm{H}, \mathrm{s}), 4.45(2 \mathrm{H}, \mathrm{s}) 4.20(2 \mathrm{H}, \mathrm{s}), 2.07(2 \mathrm{H}$, $\mathrm{m}), 1.80(2 \mathrm{H}, \mathrm{m}) 1.40(4 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR: 156.41, 152.98 , 150.19, 141.05, 138.94, 133.43, 130.45, 128.64, 127.99, 127.82, 118.94, 71.68, 69.80, 44.28, 28.37, 27.44, 22.36, 22.31. EI-MS: 350 ($\mathrm{M}+\mathrm{H}, 1.3$), 91 (100.0). CI-MS: 351 ($\mathrm{M}+2 \mathrm{H}, 22.1$), 350 ($\mathrm{M}+\mathrm{H}, 100.0$). HRMS: calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}, 349.1903$; found, 349.1900. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}: \mathrm{C}, 68.75 ; \mathrm{H}, 6.63$; N , 20.04. Found: C, $68.65 ; \mathrm{H}, 6.75 ; \mathrm{N}, 20.18$.

Method B. The mixture of dibromide 30b ($1.30 \mathrm{~g}, 3.47$ mmol), adenine ($0.61 \mathrm{~g}, 4.5 \mathrm{mmol}$), and flame-dried $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2.8 $\mathrm{g}, 21 \mathrm{mmol}$) in DMF (30 mL) was stirred at $110^{\circ} \mathrm{C}$ for 18 h . The sol id was filtered off and washed with DMF. The filtrate was evaporated and the crude product was chromatographed on a silica gel column $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 30: 1 \rightarrow 20: 1\right)$ to give product 45 ($0.72 \mathrm{~g}, 60 \%$) as a solid identical to compound prepared by method A.

9-\{[2-(Hydroxymethyl)cyclohex-1-en-1-yl]methyl\}adenine (46). Sodium ($92 \mathrm{mg}, 4 \mathrm{mmol}$) was added to liquid $\mathrm{NH}_{3}(20 \mathrm{~mL})$ under N_{2} with stirring at $-78^{\circ} \mathrm{C}$. A solution of compound 45 ($700 \mathrm{mg}, 2 \mathrm{mmol}$) in THF (10 mL) was added dropwise over a period of 3 min . After an additional 15 min , the reaction was quenched with $\mathrm{NH}_{4} \mathrm{Cl}(300 \mathrm{mg}, 5.6 \mathrm{mmol})$. Ammonia was evaporated, and the solids were filtered off and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ (10:1) with the aid of a sonicator. The combined filtrates were evaporated and the crude product was chromatographed on a silica gel column $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right.$, $20: 1 \rightarrow 15: 1)$ to give compound $46(274 \mathrm{mg}, 53 \%)$ as a solid. Mp 216-218 ${ }^{\circ} \mathrm{C}$. UV $\max (E t O H): 260$ ($\epsilon 14$ 300), 208 (ϵ $24400) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 8.10(1 \mathrm{H}, \mathrm{s})$ and $8.05\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{2}\right.$ and $\left.\mathrm{H}_{8}\right), 7.23\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right), 5.01(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=4.2 \mathrm{~Hz}, \mathrm{OH}), 4.79$ $(2 \mathrm{H}, \mathrm{s}), 4.12(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.9 \mathrm{~Hz}), 2.08(2 \mathrm{H}, \mathrm{m}), 1.75(2 \mathrm{H}, \mathrm{m})$, $1.45(4 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR: $156.44,152.74,150.50,142.35,136.97$, 127.70, 127.67, 61.12, 44.36, 28.05, 27.27, 22.55, 22.42. EIMS: 259 (M, 2.7), 136 (100.0). HRMS: cal cd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}$, 259.1433; found, 259.1432. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}$: C, 60.21; H, 6.61; N, 27.01. Found: C, 60.32; H, 6.49; N, 27.26 .
(E)- and (Z)-9-\{ [2-(Benzyloxymethyl)-1-hydroxycyclohexyl]methyl $\}$ - ${ }^{6}$-mesyladenine (48). The method described for mesylates $\mathbf{3 9}$ and $\mathbf{4 0}$ was followed, using a mixture of isomers 37b and 38b ($780 \mathrm{mg}, 2.12 \mathrm{mmol}$), DMAP (337 mg , 2.76 mmol), $\mathrm{MsCl}(0.984 \mathrm{~mL}, 12.72 \mathrm{mmol}$, added in two equimolar portions), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (30 mL), and pyridine (4 mL). Chromatography ($\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 100: 1 \rightarrow 60: 1$) afforded the N^{6}-mesyl derivatives 48 ($440 \mathrm{mg}, 46 \%$). Mp 180-183 ${ }^{\circ} \mathrm{C}$. UV max (EtOH): 273 nm ($\epsilon 14300$), 216 ($\epsilon 23600$). ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$): $\delta 8.37(1 \mathrm{H}, \mathrm{s})$ and $8.20\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{8}\right.$ and $\left.\mathrm{H}_{2}\right), 7.32$ $(4 \mathrm{H}, \mathrm{m})$ and $7.26(1 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 4.92$ and $4.70(1 \mathrm{H}, 2 \mathrm{~s}$, ratio 1:1, $\mathrm{OH}), 4.47(2.5 \mathrm{H}, \mathrm{m}), 4.37$ and $4.23(0.5 \mathrm{H}, \mathrm{J} \mathrm{AB}=13.8 \mathrm{~Hz}), 3.98$ $\left(0.5 \mathrm{H}, 1 / 2\right.$ of $\left.\mathrm{AB}, \mathrm{J}_{\mathrm{AB}}=13.0 \mathrm{~Hz}\right), 3.82(0.5 \mathrm{H}, \mathrm{m}), 3.73(0.5 \mathrm{H}$, m), $3.49(0.5 \mathrm{H}, \mathrm{m}), 3.28\left(4 \mathrm{H}, \mathrm{CH}_{3}\right.$ and $\left.\mathrm{CH}_{2}\right), 1.86-1.08(9 \mathrm{H}$, m). EI-MS: 445 (M, 2.3), 91 (100.0). HRMS: calcd for $\mathrm{C}_{11} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{~S}, 445.1784$; found, 445.1782 .
(E)- and (Z)-9-\{ [2-(Benzyloxymethyl)-1-hydroxycyclo-hexyl]methyl\}-N6-benzoyladenine (49 and 50). A mixture of isomers $\mathbf{3 7 b}$ and $\mathbf{3 8 b}$ ($1.84 \mathrm{~g}, 5 \mathrm{mmol}$) and benzoic anhydride ($\mathrm{Bz}_{2} \mathrm{O}, 9.0 \mathrm{~g}, 40 \mathrm{mmol}$) in pyridine (10 mL) was stirred at room temperature for 12 h and then at $40^{\circ} \mathrm{C}$ for 24 h . The resultant solution was poured on ice (100 g) and $\mathrm{NaHCO}_{3}(20 \mathrm{~g})$ with stirring, whereupon it was extracted with CHCl_{3}. The organic phase was washed successively with saturated aqueous NaH $\mathrm{CO}_{3}, \mathrm{H}_{2} \mathrm{O}, 5 \%$ aqueous $\mathrm{HCl}, \mathrm{NaHCO}_{3}$, and brine, and then it was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvents were evaporated and the residue was chromatographed on a silica gel column $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ $\mathrm{MeOH}, 90: 1 \rightarrow 80: 1$) to give product 49 and 50 ($1.63 \mathrm{~g}, 69 \%$) as a solid. The E/Z ratio was 1:1. UV max (EtOH): $287 \mathrm{~nm}(\epsilon$

18 300), 235 ($\epsilon 13$ 900), 206 ($\epsilon 25900$). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 11.13$ (1H, s, NHCO), 8.71 ($1 \mathrm{H}, \mathrm{s}$), 8.32 and 8.31 ($1 \mathrm{H}, 2 \mathrm{~s}, \mathrm{H}_{8}$ and $\left.\mathrm{H}_{2}\right), 8.04$ and $8.02(2 \mathrm{H}, 2 \mathrm{~s}), 7.62(1 \mathrm{H}, \mathrm{m}), 7.53(2 \mathrm{H}, \mathrm{m})$, $7.33(4 \mathrm{H}, \mathrm{m})$ and $7.26\left(1 \mathrm{H}, \mathrm{m}\right.$, aromatic $\left.\mathrm{H}^{\prime} \mathrm{s}\right), 4.95$ and 4.75 $(1 \mathrm{H}, 2 \mathrm{~s}$, ratio $1: 1, \mathrm{OH}), 4.55$ and $4.50\left(1 \mathrm{H}, \mathrm{J}_{\mathrm{AB}}=10.8 \mathrm{~Hz}\right), 4.48$ $(1 \mathrm{H}, \mathrm{s}), 4.42$ and $4.32\left(1 \mathrm{H}, \mathrm{J}_{\mathrm{AB}}=10.6 \mathrm{~Hz}\right), 4.04,3.87,3.77$ and $3.58(2 \mathrm{H}, \mathrm{m}), 3.58$ and $3.34(1 \mathrm{H}, \mathrm{m}), 1.60-1.90(9 \mathrm{H}, \mathrm{m})$. EI-MS: 471 (M, 1.7), 91 (100.0). HRMS: calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O}_{3}$, 471.2270; found, 471.2272.
(E)- and (Z)-9-\{[2-(Benzyloxymethyl)-1-methylsulfo-nylcyclohexyl]methyl\}-N6-benzoyladenine (51 and 52). The method described for mesylates 39 and 40 was followed. A mixture of isomers 49 and 50 ($1.60 \mathrm{~g}, 3.4 \mathrm{mmol}$), DMAP (0.5 $\mathrm{g}, 4.1 \mathrm{mmol}), \mathrm{MsCl}(0.79 \mathrm{~mL}, 10.2 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$ and pyridine (10 mL) were used. Chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right.$, $60: 1 \rightarrow 50: 1$) afforded product 51 and 52 as a solid (0.93 g , 50\%). ${ }^{1} \mathrm{H}$ NMR (DMSO-d d_{6}): $\delta 9.42$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{NHCO}$), 8.71 (1 H , s), 8.32 and $8.31\left(1 \mathrm{H}, 2 \mathrm{~s}, \mathrm{H}_{8}\right.$ and $\left.\mathrm{H}_{2}\right), 8.03(2 \mathrm{H}, 2 \mathrm{~s}), 7.60(1 \mathrm{H}$, $\mathrm{m}), 7.51(2 \mathrm{H}, \mathrm{m}), 7.32(4 \mathrm{H}, \mathrm{m})$ and $7.26\left(1 \mathrm{H}, \mathrm{m}\right.$, aromatic $\left.\mathrm{H}^{\prime} \mathrm{s}\right)$, 4.95 and $4.55(1 \mathrm{H}, \mathrm{J}$ AB $=10.8 \mathrm{~Hz})$ and $4.75(1 \mathrm{H}, \mathrm{m}), 4.30(2 \mathrm{H}$, $2 \mathrm{~s}), 3.80$ and $3.48(2 \mathrm{H}, \mathrm{m}), 3.40$ and $3.24(1 \mathrm{H}, \mathrm{m}), 3.15$ and 3.10 (3H, 2s), 1.66-2.0 (9H , m). FAB-MS: 549 (M, 100.0).

9-\{ [3-(Benzyloxymethyl)cyclohex-1-en-2-yl]methyl\}adenine (53) and 9-\{ [2-(Benzyloxymethyl)cyclohex-1-en-1-yl]methyl\}adenine (45). The procedure described for the E - and Z-isomers 34 and 35 was followed, using mesylates 51 and $52(450 \mathrm{mg}, 0.82 \mathrm{mmol})$ and tBuOK ($184 \mathrm{mg}, 1.65 \mathrm{mmol}$) in THF (5 mL) at $0{ }^{\circ} \mathrm{C}$. A solution of the crude product in 20% NH_{3} in methanol was then allowed to stand at room temperature for 4 h . Evaporation of volatile components and chromatography ($\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 30: 1 \rightarrow 20: 1$) gave compounds 53 ($130 \mathrm{mg}, 46 \%$) and 45 ($60 \mathrm{mg}, 22 \%$) as solids. Compound 45 was identical (TLC, ${ }^{1} \mathrm{H}$, and ${ }^{13} \mathrm{C}$ NMR) to the product obtained from dibromo derivative 30b.
Compound 53. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 8.35(1 \mathrm{H}, \mathrm{s})$ and 7.74 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{2}$ and H_{8}, adenine), $7.28(5 \mathrm{H}, \mathrm{m}), 6.60\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right)$, $5.60(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=), 4.88$ and $4.64(2 \mathrm{H}, \mathrm{J}$ AB $=15.1 \mathrm{~Hz}), 4.46$ $(2 \mathrm{H}, \mathrm{s}), 3.50(2 \mathrm{H}, \mathrm{m}), 2.27$ and $2.17(1 \mathrm{H}, \mathrm{m}), 1.99(2 \mathrm{H}, \mathrm{m}), 1.85$ and $1.72(1 \mathrm{H}, \mathrm{m}) 1.56(3 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR: 156.04, 153.19, 150.33, 140.96, 138.42, 133.75, 128.64, 127.99, 127.81, 119.57, 73.37, 72.83, 48.17, 35.92, 25.93, 25.37, 19.31.

9-\{[3-(Hydroxymethyl)cyclohex-1-en-2-yl]methyl\}adenine (54). The deprotection was carried out as described for methyl enecycl obutanes 21 and 22, with compound 53 (100 $\mathrm{mg}, 0.22 \mathrm{mmol})$ and $\mathrm{BCl}_{3}\left(1 \mathrm{M}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1.37 \mathrm{~mL}, 1.37 \mathrm{mmol}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$. The crude product was chromatographed on a silica gel column $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 20: 1 \rightarrow 15: 1\right)$ to give 40 $\mathrm{mg}(70 \%)$ of $54 . \mathrm{Mp} 184-187^{\circ} \mathrm{C}$ after crystallization from $\mathrm{CH}_{2}-$ $\mathrm{Cl}_{2} / \mathrm{MeOH}$ (10:1). UV max (EtOH): $261 \mathrm{~nm}(\epsilon 14$ 100), 209 (ϵ 25700). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 8.14$ and 8.05 ($2 \mathrm{H}, \mathrm{s}, \mathrm{H}_{8}$ and $\left.\mathrm{H}_{2}\right), 7.22\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right), 5.40(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}=), 4.76$ and $4.66(2 \mathrm{H}$, $\left.\mathrm{J}_{\mathrm{AB}}=11.7 \mathrm{~Hz}\right), 4.64(1 \mathrm{H}, \mathrm{brs}, \mathrm{OH}), 3.52$ and $3.38(2 \mathrm{H}, \mathrm{m}), 2.01$ (1H, m), $1.89(2 \mathrm{H}, \mathrm{m}), 1.70(1 \mathrm{H}, \mathrm{m}), 1.51(1 \mathrm{H}, \mathrm{m}), 1.42(2 \mathrm{H}$, m). ${ }^{13} \mathrm{C}$ NMR 156.44, 152.98, 150.10, 141.45, 134.98, 126.58, 119.04, 62.95, 47.30, 38.38, 25.15, 24.95, 18.87. EI-MS 259: (M, 5.4), 228 (100.0). HRMS: calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}, 259.1433$; found, 259.1433. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}: \mathrm{C}, 60.21 ; \mathrm{H}, 6.61$; N, 27.01. Found: C, 60.12; H, 6.49; N, 27.18.

Acknowledgment. Our thanks are due to L. M. Hryhorczuk from the Central Instrumentation F acility, Department of Chemistry, Wayne State U niversity (R. J. Hood, Director) for mass spectra. The work described herein was supported by U.S. Public Health Service Research Grant RO1-CA32779 (J.Z.) from the National Cancer Institute and Contract NO1-AI35177 (E.R.K.) from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.

[^0]: ${ }^{+}$Wayne State University School of Medicine.
 \# Wayne State University.
 § The University of Alabama at Birmingham.
 (1) Suhadolnik, R. J . Nucleosides as Biological Probes; Wiley: New York, 1979; pp 279-281.
 (2) Marquez, V. E.; Lim, M.-I . Med. Res. Rev. 1986, 6, 1-40.
 (3) Martin, J. C.; Hitchcock, M. J. M.; Fridland, A.; Ghazzouli, I.; Kaul, S.; Dunkle, L. M.; Sterzycki, R. Z.; Mansuri, M. M. Ann. N. Y. Acad. Sci. 1990, 616, 22-28.
 (4) Agrofoglio, L.; Suhas, E.; Farese, A.; Condom, R.; Challand, R. S.; Earl, R. E.; Guedj, R. Tetrahedron 1994, 50, 10611-10670.
 (5) K atagiri, N.; Nomura, M.; Sato, H.; Kaneko, C.; Yusa, K.; Tsuruo, T. J. Med. Chem. 1992, 35, 1882-1886.
 (6) Matsuda, A.; Takenuki, K.; Tanaka, M.; Sasaki, T.; Ueda, T. J . Med. Chem. 1991, 34, 812-819.
 (7) Innaimo, S. F.; Seifer, M.; Bisacchi, G. S.; Standring, D. N.; Zahler, R.; Colonno, R. J. Antimicrob. Agents Chemother. 1997, 41, 1444-1447.
 (8) Zemlicka, J.; Freisler, J. V.; Gasser, R.; Horwitz, J. P. J. Org Chem. 1973, 38, 990-999.

[^1]: (9) Maruyama, T.; Hanai, Y.; Sato, Y. Nucleosides Nucleotides 1992, 11, 855-864.
 (10) Gharbaoui, T.; Legraverend, M.; Bisagni, E. Tetrahedron Lett. 1992, 33, 7141-7144.
 (11) Gourdel-M artin, M.-E.; Huet, F.J . Org. Chem. 1997, 62, 21662172.
 (12) Agrofoglio, L.; Challand, S. R. Acyclic, Carbocyclic and LNucleosides; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1998; pp 268-273.
 (13) K onkel, M. J ; Vince, R. Tetrahedron 1996, 52, 799-808.
 (14) Rosenquist, A.; K varnstrom, I.; Classon, B.; Samuel sson, B. J . Org. Chem. 1996, 61, 6282-6288.
 (15) Wang, J.;'Herdewijn, P. J. Org. Chem. 1999, 64, 7820-7827.
 (16) Robins, M. J.; Trip, E. M. Tetrahedron Lett. 1974, 3369-3372.
 (17) (a) Ciapetti, P.; Taddei, M. Terahedron 1998, 54, 11305-11310. (b) J ohnson, F.; Pillai, K. M. R.; Grollman, A. P.; Tseng, L.; Takeshita, M. J. Med. Chem. 1984, 27, 954-958. (c) Phadtare, S.; Zemlicka, J. Tetrahedron Lett. 1990, 31, 43-46.

[^2]: (18) (a) Qiu, Y.-L.; Hempel, A.; Camerman, N.; Camerman, A.; Geiser, F.; Ptak, R. G.; Breitenbach, J . M.; Kira, T.; Li, L.; Gullen, E.; Cheng, Y.-C.; Kern, E. R.; Drach, J. C.; Zemlicka, J. J . Med. Chem. 1998, 41, 5257-5264. (b) Qiu, Y.-L.; K Kebati, M. B.; Ptak, R. G.; Fan, B. Y.; Breitenbach, J . M.; Lin, J .-S.; Cheng, Y.-C.; Kern, E. R.; Drach, J. C.; Zemlicka, J. J . Med. Chem. 1998, 41, 10-23. (c) Qiu, Y.-L.; Ptak, R. G.; Breitenbach, J. M.; Lin, J .-S.; Cheng, Y.-C.; Kern, E. R.; Drach,
 J. C.; Zemlicka, J. Antiviral Chem. Chemother. 1998, 9, 341-352.
 (19) Zemlicka, J. Nucleosides Nucleotides 1997, 16, 1003-1012.
 (20) Qiu, Y.-L.; Zemlicka, J. Synthesis 1998, 1447-1452.
 (21) Lee-Ruff, E.; Xi, F.; Qie, J. H. J. Org. Chem. 1996, 61, 15471550.
 (22) Kaya, R.; Beller, N. R. J . Org. Chem. 1981, 46, 197-201.

[^3]: (23) Narasaka, K.; K usama, H.; Hayashi, Y. Bull. Chem. Soc. J pn. 1991, 64, 1471-1478.
 (24) March, J. Advanced Organic Chemistry; Wiley: New York, 1992; p 323.

[^4]: (25) Zhao, H.; Pendri, A.; Greenwald, R. B. J . Org. Chem. 1998, 63, 7559-7562.

[^5]: (26) Brown, H. C.; Bhat, K. S. J. Org. Chem. 1986, 51, 445-449.
 (27) Singaram, B.; Rangaishenvi, M. V.; Brown, H. C.; Goralski, C. T.; Hasha, D. L. J. Org. Chem. 1991, 56, 1543-1549.

[^6]: (28) Murata, S.; Suzuki, M.; Noyori, R. Tetrahedron 1988, 44, 42594275.

